Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jian-Qiang Qu,^a* Xiao-Fei Jia,^a Jian-Zhong Cui,^a Hong Zhang^a and Liu-Fang Wang^b

^aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and ^bState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: jqqu@tju.edu.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.004 Å Disorder in main residue R factor = 0.047 wR factor = 0.145 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-Fluorouracil-1-propionic acid

In the title compound, $C_7H_7FN_2O_4$, the propionic acid group is twisted out of the pyrimidine plane. In the crystal structure, molecules are connected by intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds, forming columns. Received 12 December 2005 Accepted 5 January 2006

Comment

5-Fluorouracil is a normal antitumor medicine which has been used in clinics for 40 years; it can be used to treat breast cancer, gastric carcinoma and bladder cancer (Duschinsky *et al.*, 1957; Heidelberger *et al.*, 1957; Correale *et al.*, 2005). However, the toxic side effects, such as marrow inhibition and a little harmful to liver, kidney and digestive system, limit its wider applicability (Wasterack & Bettina, 1987). Searching for compounds with high antitumor activity and low toxicity is an urgent task for scientists. In order to reduce the side effects, many derivatives of 5-fluorouracil have been synthesized and some of these compounds have better biological activity (Zhuo *et al.*, 1986). 5-Fluorouracil-1-propionic acid, (I), is a member of the family. Its rare earth metal complexes have been reported to have prooxidative and antitumor activity (Liu *et al.*, 2000).

The propionic acid group is twisted out of the pyrimidine plane [torsion angles C7–N1–C3–C2 and C4–N1–C3– C2 are -88.0 (3) and 94.4 (2)°, respectively] (Fig. 1). C–F, C–O and C–N bond distances are given in Table 1. Intermolecular N–H···O and O–H···O hydrogen bonds (Table 2) form columns along the *b* axis (Fig. 2).

Experimental

The title compound, (I), was prepared according to a modification of the literature method of Zhuo *et al.* (1986). A mixture of 5-fluorouracil (13 g), acrylonitrile (10 g), sodium hydrate (15 g) and water (100 ml) was refluxed at 343 K for 4 h and cooled to room temperature. After treatment with strong-acid styrene-series cationexchange resin, the title compound was obtained (yield 63%, m.p. 457–458 K). Single crystals suitable for X-ray diffraction were

© 2006 International Union of Crystallography All rights reserved obtained by slow evaporation of an ethanol solution. IR (KBr, ν cm⁻¹): 3284, 1694, 1416; ¹H NMR (d_6 -DMSO, δ , p.p.m.): 11.70 (s, 1H), 12.65 (b, 1H), 7.85 (d, 1H), 3.72 (t, 2H), 2.54 (t, 2H); analysis calculated for C₇H₇FN₂O₄: C 41.58, H 3.49, N 13.86%; found: C 41.50, H 3.62, N 13.77%.

 $D_x = 1.577 \text{ Mg m}^{-3}$

Cell parameters from 1663

1747 independent reflections

1245 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\begin{array}{l} \theta = 2.8 {-} 26.3^{\circ} \\ \mu = 0.14 \ \mathrm{mm}^{-1} \end{array}$

T = 294 (2) K

 $R_{\rm int}=0.035$

 $\theta_{\rm max} = 26.5^{\circ}$

 $h = -20 \rightarrow 25$

 $k = -7 \rightarrow 10$

 $l = -16 \rightarrow 16$

Block, colourless $0.26 \times 0.24 \times 0.20$ mm

Crystal data

 $\begin{array}{l} C_{7}H_{7}FN_{2}O_{4}\\ M_{r}=202.15\\ Monoclinic,\ C2/c\\ a=20.279\ (6)\ Å\\ b=8.137\ (2)\ Å\\ c=13.222\ (4)\ Å\\ \beta=128.673\ (4)^{\circ}\\ V=1703.3\ (8)\ Å^{3}\\ Z=8 \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.958, T_{\max} = 0.972$ 4556 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0679P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.047$	+ 1.9948 <i>P</i>]
$wR(F^2) = 0.145$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.002$
1747 reflections	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
137 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected bond lengths (Å).

F1-C6	1.352 (3)	N1-C3	1.473 (3)
O1-C1	1.229 (3)	N1-C4	1.380 (3)
O2-C1	1.324 (3)	N1-C7	1.370 (3)
O3-C4	1.217 (3)	N2-C4	1.377 (3)
O4-C5	1.222 (3)	N2-C5	1.376 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H2E\cdotsO1^{i}$	0.81 (3)	2.00 (3)	2.797 (3)	171 (3)
$O2-H2C\cdots O4^{n}$ $O2-H2D\cdots O3^{iii}$	0.839(10) 0.839(10)	2.06 (2) 2.154 (14)	2.887 (3) 2.990 (3)	167 (8) 174 (8)
Symmetry codes: (i) x	z, y+1, z; (ii) $-x$	$, y - 1, -z + \frac{1}{2};$ (ii	ii) $-x + \frac{1}{2}, -y + \frac{1}{2}$	$\frac{3}{2}, -z+1.$

H atoms attached to O and N atoms were located in a difference map. The OH group is disordered over two positions with an occupancy ratio of 0.5:0.5 and the H atom was refined with a restraint of O-H = 0.82 (2) Å. The H atom of the NH group was refined freely. All other H atoms were placed in geometrically calculated positions (C-H = 0.93 or 0.97 Å) and refined as riding atoms [$U_{\rm iso}({\rm H}) =$ 1.2 $U_{\rm eq}({\rm C})$].

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsolids are drawn at the 35% probability level. Both disorder components of the OH group are shown.

Figure 2	
Packing of (I),	viewed along the <i>b</i> axis.

structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Scientific Research Foundation of Tianjin University.

References

Bruker (1997). SMART (Version 5.06a), SAINT (Version 5.051) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wiscosin, USA.

- Correale, P., Fulfaro, F., Marsili, S., Cicero, G., Bajardi, E., Intrivici, C., Vuolo, G., Carli, A. F., Caraglia, M., Prete, S. D., Greco, E., Gebbia, N. & Francini, G. (2005). *Cancer Chemother. Pharmacol.* 56, 563–568.
- Duschinsky, R., Pleven, E. & Heidelberger, C. (1957). J. Am. Chem. Soc. 79, 4559–4560.
- Heidelberger, C., Chaudhuri, M. S., Danneberg, P., Mooren, D., Duschinsky, R., Schnitzer, R. J., Pleven, E. & Scheiner, J. (1957). *Nature (London)*, **179**, 663–666.
- Liu, Y.-M., Kang, J.-H., Wang, Z.-P., Wang, L.-F., Gao, L., Xia, C.-G. & Cui, J.-R. (2000). J. Coord. Chem. 52, 1–13.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wasterack, C. & Bettina, H. (1987). Pharmazie, 12, 73-75.
- Zhuo, R.-X., Fan, C.-L. & Zhou, R.-L. (1986). Chem. J. Chin. Univ. 7, 508–510.